Dougherty Valley HS Chemistry Equilibrium – Le Chatelier's Principle and Keq Practice

Name:

Period:

Seat#:

Directions: Complete the following chart by choosing from the following options:Equilibrium Shift: left, right, no change Δ []/Temp: increase, decrease, no change Δ Keq: no, yes

$\underline{\qquad } \mathsf{N}_{2 \ (g)} + \underline{\qquad } \mathsf{H}_{2 \ (g)} \leftrightarrow \underline{\qquad } \mathsf{N}\mathsf{H}_{3 \ (g)} + \ 92.05 \ \mathsf{kJ}$

Stre	essor	Equilibrium Shift	∆ [N₂]	∆ [H₂]	∆ [NH₃]	∆ Temp	∆ Keq	
1) Add	d N ₂	Right	<u>Slight</u> increase	Decrease	Increase	Increase	No	
2) Add	d H₂							
3) Add	$d NH_3$							
4) Rei	move N ₂							
5) Rei	move H ₂							
6) Rei NH	move I ₃							
7) Inc Ter	rease mp							
8) Dee Ter	crease mp							
•	crease essure							
-	crease essure							
11) Write the equilibrium constant expression for K_{eq} POCl _{3 (g)} \leftrightarrow POCl _(g) + Cl _{2 (g)}					12) Write the equilibrium constant expression for K_{eq} $2H_{2 (g)} + O_{2 (g)} \leftrightarrow 2H_2O_{(g)}$			
13) Write the equilibrium constant expression for K_{eq} $2C_2H_{4(g)} + O_{2(g)} \leftrightarrow 2CH_3CHO_{(g)}$					te the equilibrium $S_{(g)} + 3O_{2(g)} \leftrightarrow 2$		on for K _{eq}	

$2SO_{2(g)} + O_{2(g)} \leftrightarrow 2SO_{3(g)}$	16) Write the equilibrium constant K_c for the equation CaCO _{3 (s)} \leftrightarrow CaO (s) + O _{2 (g)}		
17) Write the equilibrium constant K_p for the equation $2SO_{2(g)} + O_{2(g)} \leftrightarrow 2SO_{3(g)}$	18) Write the equilibrium constant K_p for the equation $H_2O_{(g)} + C_{(s)} \leftrightarrow H_{2(g)} + CO_{(g)}$		
19) The equilibrium constant expression for a gas reaction corresponding to this expression.	in $K_{eq} = \frac{[NH_3]^4 [O_2]^5}{[NO]^4 [H_2 O]^6}$ Write the balanced chemical equation		
20) The equilibrium constant expression for a gas reaction corresponding to this expression.	in $K_{eq} = \frac{[CS2][H_2]^4}{[CH_4][H_2S]^2}$ Write the balanced chemical equation		
	$H_{2(g)}$ + $I_{2(g)}$ at 425°C is 1.84. What is the value of K _{eq} for the		
following equation: $H_{2(g)} + I_{2(g)} \leftrightarrow 2HI_{(g)}$ 22) Consider the decomposition of nitrous oxide, also know At 25°C the K _c is 7.3 x 10 ³⁴ a. Based on the information given, what can you say a			
22) Consider the decomposition of nitrous oxide, also know At 25°C the K_c is 7.3 x 10^{34} a. Based on the information given, what can you say a	about the rate of decomposition of the reaction? have a tendency to decompose into nitrogen and oxygen, or		
 22) Consider the decomposition of nitrous oxide, also know At 25°C the K_c is 7.3 x 10³⁴ a. Based on the information given, what can you say at b. Based on the information given, does nitrous oxide does it have a tendency to stay as nitrous oxide? Junc C. You can convert back and for between K_c and K_p if K_p = K_c(RT)^{Δn} where R is the ideal gas constant (0.1 change in number of moles of gaseous products constant) 	about the rate of decomposition of the reaction? have a tendency to decompose into nitrogen and oxygen, or ustify your answer. you are given one of the values using the following equation: $0821 \text{ L} \cdot \text{atm/K} \cdot \text{mol}$, T is temperature (in Kelvin), and Δn is the ompared to gaseous reactants $\Delta n =$ <i>gous reactants</i>) Using this information, and the information		

concent	rations of	SO2, O2 a	and SO₃ w	vere 0.75	$_{(g)} + O_{2 (g)} \leftrightarrow 2SO_{3(g)}$ at a particular temperature the equilibrium M, 0.30 M, and 0.15 M, respectively. At the temperature of the constant K_{eq} for the reaction.
24) For the	əquilibriun	n system	described	by: PCl₅	$_{(g)} \leftrightarrow PCI_{3(g)} + CI_{2(g)}$ K _{eq} equals 35 at 487°C. If the concentrations of
the PCl₅	and PCl₃	are 0.015	5 M and 0	.78 M, res	spectively, what is the concentration of the Cl ₂ ?
25) CO _{2 (g)} +	11 ()	00 1			
0.0092 r (Remen	noles of C iber that N	CO, and 0 ∕I = ^{mol} /∟)	.0092 mol	es of H ₂ C	, K _c , for the above system, if 0.1908 moles of CO ₂ , 0.0908 moles of H ₂ , 0 vapor were present in a 2.00 L reaction vessel at equilibrium.
26) The follo	wing table	e gives so	ome value	s for read	tant and product equilibrium concentrations (in mol/L) at 700 K for the
Shift Re	action, an	importan	t method	for the co	mmercial production of hydrogen gas. $CO_{(g)} + H_2O_{(g)} \leftrightarrow CO_{2(g)} + H_{2(g)}$
Trial	[CO ₂]	[H ₂]	[CO]	[H ₂ O]	a. Write the expression for calculating K_{eq} for the reaction.
1	0.600	0.600	0.266	0.266	
2	0.600	0.800	0.330	0.286	
3	2.00	2.00	0.877	0.896	
4	1.00	1.50	0.450	0.655	
5	1.80	2.00	0.590	1.20	
b.	Calculate	the K _{eq} fo	or each of	the five tr	ials.

c. How do the Keqs for each trial compare to each other? Why?